Effects of in-group bias and homophily on opinion dynamics

Conference on Complex Systems 2022

- Peter Steiglechner^{1,2}
- ► Agostino Merico^{1,2}
- ► Paul E. Smaldino^{3,4}
- ► Deyshawn Moser^{1,2}
- ► Achim Schlüter^{1,2}

- 1 Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- 2 Jacobs University Bremen, Germany
- 3 Department of Cognitive and Information Sciences, University of California, Merced, USA
- 4 Santa Fe Institute, USA

Climate change debate is social

[Young people's] message is clear: the older generation has failed, and it is the young who will pay in full — with their very futures.

- United Nations

www.un.org/en/climatechange/youth-in-action

We young people [...] must hold the older generations accountable for the mess they have created.

 Greta Thunberg, Fridays for Future (2018, CNN Interview)

twitter.com/CNN/status/1077444076176359426 photograph by European Parliament, distributed under a CC-BY 28 license

Social identity shapes the formation of individual opinions

Social identity

People affiliate with groups based on characteristics like age, occupation, $\dots \to \text{in-group}$

Social identity shapes the formation of individual opinions

Social identity

People affiliate with groups based on characteristics like age, occupation, $\dots \to \text{in-group}$

Homophily

People tend to interact predominantly with similar others

(McPherson, Smith-Lovin, and Cook, 2001; Smaldino and Jones, 2021)

interaction preference

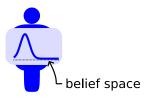
Social identity shapes the formation of individual opinions

Social identity

People affiliate with groups based on characteristics like age, occupation, $\dots \to \text{in-group}$

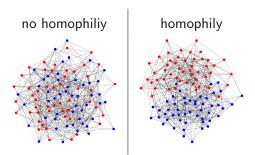
Homophily

People tend to interact predominantly with similar others (McPherson, Smith-Lovin, and Cook, 2001; Smaldino and Jones, 2021)


interaction preference

In-group favouritism bias (here 'bias')

People tend to perceive in-group members as more informative than out-group members

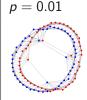

(Tajfel, 1974; Hewstone, Rubin, and Willis, 2002; Brewer, 1979)

agent

- social identity (red/blue)
- opinion distribution

agent

- social identity (red/blue)
- opinion distribution


social network


- homophily

structure in networks with homophily: small-world

regular, lattice

agent

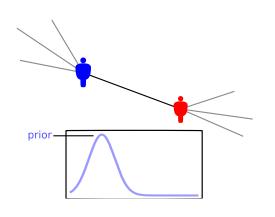
- social identity (red/blue)
- opinion distribution

social network

homophily randomness

18th Oct 2022

agent


- social identity (red/blue)
- opinion distribution

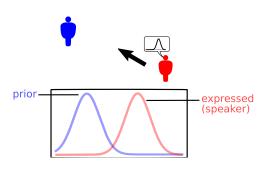
social network

- homophily
- randomness

opinion update

_

agent


- social identity (red/blue)
- opinion distribution

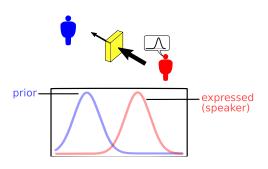
social network

- homophily
- randomness

opinion update

- social influence

agent


- social identity (red/blue)
- opinion distribution

social network

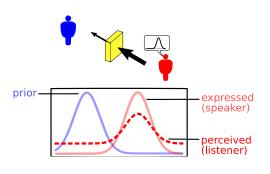
- homophily
- randomness

opinion update

- social influence
 - 1 communication
 - 2
 - 3

agent

- social identity (red/blue)
- opinion distribution


social network

- homophily
- randomness

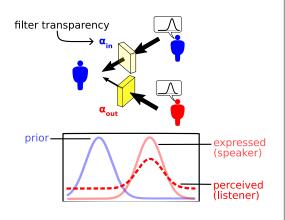
opinion update

- social influence
 - 1 communication
 - 2 perception

3

agent

- social identity (red/blue)
- opinion distribution


social network

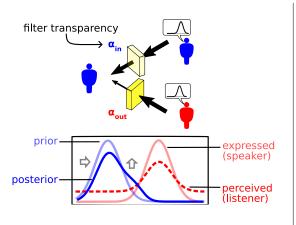
- homophily
- randomness

opinion update

- social influence
 - 1 communication
 - 2 perception

3

agent


- social identity (red/blue)
- opinion distribution

social network

- homophily
- randomness

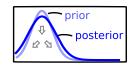
opinion update

- social influence
 - 1 communication
 - 2 perception
 (in-group bias)
 - 3

agent

- social identity (red/blue)
- opinion distribution

social network

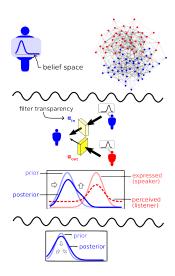

- homophily
- randomness

opinion update

- social influence
 - 1 communication
 - perception
 (in-group bias)
 - update (Bayes)

Peter Steiglechner (ZMT, Jacobs)

agent


- social identity (red/blue)
- opinion distribution

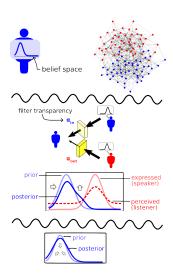
social network

- homophily
- randomness

opinion update

- social influence
 - 1 communication
 - 2 perception
 (in-group bias)
 - 3 update (Bayes)
 - non-interaction diffusion

agent


- social identity (red/blue)
- opinion distribution

social network

- homophily
- randomness

opinion update

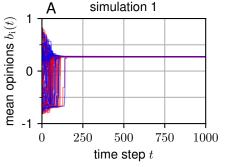
- social influence
 - 1 communication
 - 2 perception
 (in-group bias)
 - B update (Bayes)
 - non-interaction diffusion

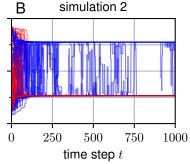
agent

- social identity (red/blue)
- opinion distribution

social network

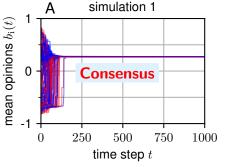
- homophily
- randomness

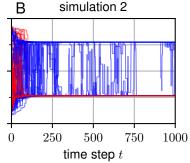

opinion update


- social influence
 - 1 communication
 - 2 perception
 (in-group bias)
 - 3 update (Bayes)
- non-interaction diffusion

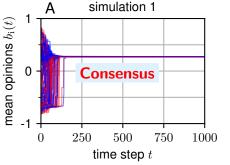
initialisation

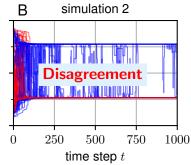
Society with bias ($\alpha_{\rm in}=$ 0.8, $\alpha_{\rm out}=$ 0.3) and homophilic, random network



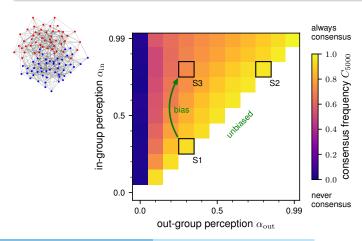


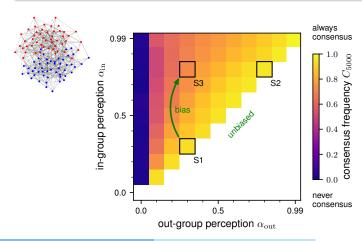
Society with bias ($\alpha_{\rm in}=$ 0.8, $\alpha_{\rm out}=$ 0.3) and homophilic, random network

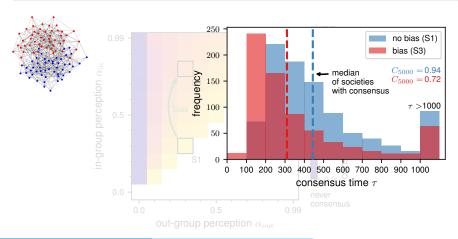




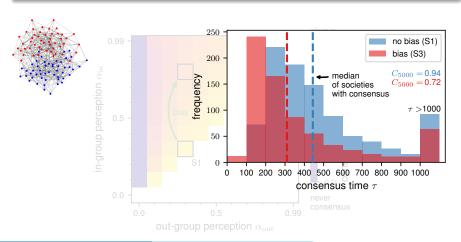
Society with bias ($\alpha_{\rm in}=$ 0.8, $\alpha_{\rm out}=$ 0.3) and homophilic, random network



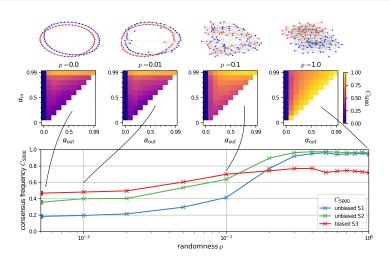

In societies with homophilic, random networks


In societies with homophilic, random networks

bias impedes consensus . . .

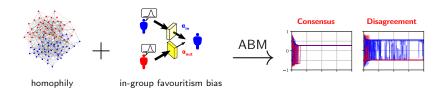

In societies with homophilic, random networks

- bias impedes consensus . . .


In societies with homophilic, random networks

- bias impedes consensus ...
- but sometimes accelerates consensus formation

In societies with homophilic, (quite) regular networks


bias facilitates consensus

Summing up

Summing up

We young people [. . .] must hold the older generations accountable for the mess they have created.

— Greta Thunberg, Fridays for Future

When social identity is relevant in a public debate,

- ▶ in-group bias may impede OR facilitate consensus
 - ightarrow depends on structural properties of the society.
- in-group bias may have different long- and short-term effects for consensus formation

References I

Related work:

- Martins (2009)
- Galesic et al. (2021)
- ► Sobkowicz (2018)

Brewer, M. B. (1979). "In-Group Bias in the Minimal Intergroup Situation: A Cognitive-Motivational Analysis". In: *Psychological Bulletin* 86.2, pp. 307–324. ISSN: 1939-1455(Electronic),0033-2909(Print). DOI: 10.1037/0033-2909.86.2.307.

Fu, F. et al. (Nov. 2012). "The Evolution of Homophily". In: Scientific Reports 2.1, p. 845. ISSN: 2045-2322. DOI: 10.1038/srep00845.

Galesic, M. et al. (2021). "Integrating Social and Cognitive Aspects of Belief Dynamics: Towards a Unifying Framework". In: *Journal of The Royal Society Interface* 18.176, p. 20200857. DOI: 10.1098/rsif.2020.0857.

Hewstone, M., M. Rubin, and H. Willis (2002). "Intergroup Bias". In: Annual Review of Psychology 53.1, pp. 575–604. DOI: 10.1146/annurev.psych.53.100901.135109.

Martins, A. C. R. (Feb. 2009). "Bayesian Updating Rules in Continuous Opinion Dynamics Models". In: *Journal of Statistical Mechanics: Theory and Experiment* 2009.02, P02017. ISSN: 1742-5468. DOI: 10.1088/1742-5468/2009/02/P02017.

McPherson, M., L. Smith-Lovin, and J. M. Cook (2001). "Birds of a Feather: Homophily in Social Networks". In: Annual Review of Sociology 27.1, pp. 415–444. DOI: 10.1146/annurev.soc.27.1.415.

Smaldino, P. E. and J. H. Jones (2021). "Coupled Dynamics of Behaviour and Disease Contagion among Antagonistic Groups". In: *Evolutionary Human Sciences* 3, e28. DOI: 10.1017/ehs.2021.22.

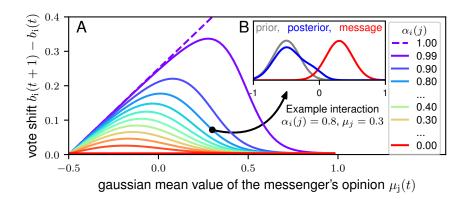
Sobkowicz, P. (2018). "Opinion Dynamics Model Based on Cognitive Biases of Complex Agents". In: Journal of

Update rule

- ▶ Opinion of agent i: $x_i(b, t)$, where $b \in \mathcal{B}$ belief space \mathcal{B} .
- Perception of the opinion of a speaker j:

$$p_i(x_j(b,t)) = \alpha_i(j) \cdot x_j(b,t) + (1 - \alpha_i(j)) \cdot \mathcal{U}(b) ,$$

where $\alpha_i(j)$ is $\alpha_{\rm in}$ if i and speaker j are in-group members and $\alpha_{\rm out}$ else. $\mathcal U$ is the uniform distribution.

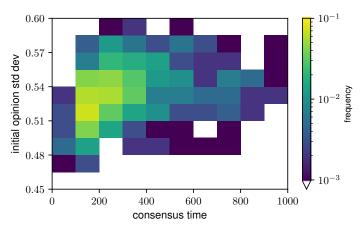

Update rule after interaction (before normalisation):

$$x_i(b, t+1) \sim x_i(b, t) \cdot p_i(x_j(b, t))$$

Update during non-interaction (diffusion):

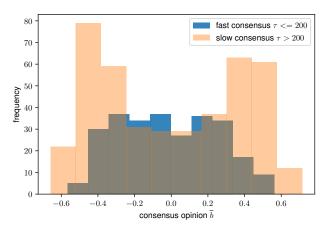
integrate for one time step : $\frac{\mathrm{d}}{\mathrm{d}t}x_i(b,t) = \kappa \cdot \frac{\mathrm{d}^2}{\mathrm{d}b^2}x_i(b,t)$

Impact of single interaction



Parameters

Table: Model parameters and the default values.


Parameter	Description	Value	
N	nr. of agents	100	
k	average node degree of an agent	10	
S	nr. of social identities (here, evenly sized groups)	2	
\mathcal{B}	belief space	$\{-0.995, -0.985, \dots$	
		0.995}	
f	frequency of an agent to interact (listen) in a time step	0.2	
κ	diffusion constant of the opinion distribution, when the agent does not interact	0.0002	
σ_0	variance of initial gaussian opinion distributions for all agents	0.2	
h	level of homophily in the network	0 (no homophily), 0.6 (homophily)	
$lpha_{ m in}$	perceived informativeness of in-group member	€ [0, 1[
$lpha_{ m out}$	perceived informativeness of out-group agent	€ [0, 1[
$\sigma_{ m cons}$	threshold of the standard deviation of agent mean opinions that defines consensus at time τ ($\sigma = \frac{1}{N}$. $\left(\sum_{i \in \{1N\}} \left(b_i(\tau) - \overline{b}(\tau)\right)^2\right)^{0.5} < \sigma_{\rm cons})$	0.01	

Low initial disagreement favours faster consensus

Society with fixed bias ($lpha_{
m in}=$ 0.8, $lpha_{
m out}=$ 0.3) and fixed homophily ($\emph{h}=$ 0.6)

Fast consensus is mostly moderate

Society with fixed bias ($\alpha_{\rm in}=$ 0.8, $\alpha_{\rm out}=$ 0.3) and fixed homophily (h= 0.6)

Network construction

network with $k_{in} = 4$, p = 0

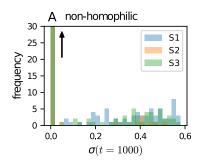
Sensitivity analysis

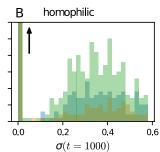
Random networks p = 1

name	C ₅₀₀₀ (S1)	C ₅₀₀₀ (S2)	C ₅₀₀₀ (S3)	$ ilde{ au}(S1)$	$ ilde{ au}(S2)$	$ ilde{ au}(S3)$
default	0.94	0.96	0.72	394.0	210.5	260.0
f = 0.1	0.97	0.99	0.83	605.5	317.0	382.5
f = 0.4	0.94	0.96	0.63	205.5	119.0	145.0
n = 1000	0.98	1.00	0.89	852.0	418.0	543.0
$\kappa = 0.0$	0.76	0.75	0.41	348.0	303.0	nan
$\kappa = 0.0001$	0.93	0.95	0.65	446.5	251.0	300.0
$\kappa = 0.0004$	0.97	0.98	0.79	316.0	161.0	196.0
$\kappa = 0.002$	1.00	1.00	1.00	155.0	95.0	115.0
h = 0.2	0.98	1.00	0.85	464.0	249.5	318.0

 C_{5000} = consensus frequency at T = 5000,

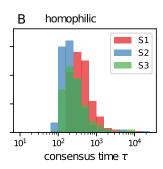
 $ilde{ au}=$ median consensus time (IF consensus before T= 5000).

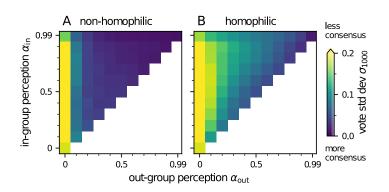

Regular networks p = 0.0

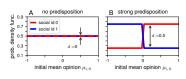

name	C ₅₀₀₀ (S1)	C ₅₀₀₀ (S2)	C ₅₀₀₀ (S3)	
default	0.18	0.36	0.47	
f = 0.1	0.32	0.58	0.63	
f = 0.4	0.09	0.20	0.36	
n = 1000	0.00	0.00	0.00	
$\kappa = 0.0$	0.00	0.00	0.00	
$\kappa = 0.0001$	0.08	0.20	0.30	
$\kappa = 0.0004$	0.35	0.63	0.70	
$\kappa = 0.002$	1.00	1.00	1.00	
h = 1.5	0.08	0.23	0.32	

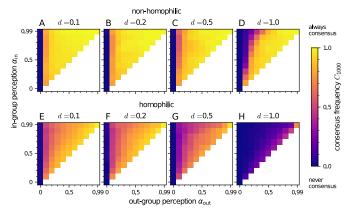
 C_{5000} = consensus frequency at T = 5000,

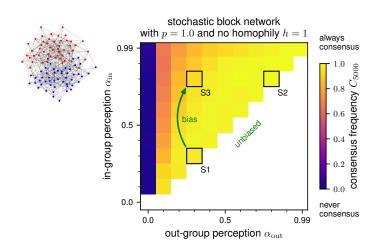
 $\tilde{ au}=$ median consensus time (IF consensus before T=5000).


Disagreement is qualitatively distinct from consensus


Time horizon


Alternative measure of disagreement


Disagreement = standard deviation of all agent mean opinions


Predisposition

Initial opinion distribution:

No homophily

